Role of boundary conditions in helicoidal flow collimation: Consequences for the von Kármán sodium dynamo experiment.
نویسندگان
چکیده
We present hydrodynamic and magnetohydrodynamic (MHD) simulations of liquid sodium flow with the PLUTO compressible MHD code to investigate influence of magnetic boundary conditions on the collimation of helicoidal motions. We use a simplified cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multiblades impeller inspired by those used in the Von-Kármán-sodium (VKS) experiment. We show that the impinging of the large-scale flow upon the impeller generates a coherent helicoidal vortex inside the blades, located at a distance from the upstream blade piloted by the incident angle of the flow. This vortex collimates any existing magnetic field lines leading to an enhancement of the radial magnetic field that is stronger for ferromagnetic than for conducting blades. The induced magnetic field modifies locally the velocity fluctuations, resulting in an enhanced helicity. This process possibly explains why dynamo action is more easily triggered in the VKS experiment when using soft iron impellers.
منابع مشابه
Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows
We study the effect of different boundary conditions on the kinematic dynamo threshold of von Kármán type swirling flows in a cylindrical geometry. Using an analytical test flow, we model different boundary conditions: insulating walls all over the flow, effect of sodium at rest on the cylinder side boundary, effect of sodium behind the impellers, effect of impellers or side wall made of a high...
متن کاملAmbivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment
The intention of the ”von Kármán sodium” (VKS) experiment is to study the hydromagnetic dynamo effect in a highly turbulent and unconstrained flow. Much effort has been devoted to the optimization of the mean flow and the lateral boundary conditions in order to minimize the critical magnetic Reynolds number R m and hence the necessary motor power. The main focus of this paper lies on the role o...
متن کاملMean-field model of the von Kármán sodium dynamo experiment using soft iron impellers.
It has been observed that dynamo action occurs in the von-Kármán-Sodium (VKS) experiment only when the rotating disks and the blades are made of soft iron. The purpose of this paper is to numerically investigate the role of soft iron in the VKS dynamo scenario. This is done by using a mean-field model based on an axisymmetric mean flow, a localized permeability distribution, and a localized α e...
متن کاملImpact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows.
We present numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von Kármán-like flow subject to time-dependent nonaxisymmetric velocity perturbations. The numerical model is based on the setup of the French von Kármán-sodium dynamo (VKS) and on the flow measurements from a water experiment conducted at the University of Navarra i...
متن کاملDynamo threshold detection in the von Kármán sodium experiment.
Predicting dynamo self-generation in liquid metal experiments has been an ongoing question for many years. In contrast to simple dynamical systems for which reliable techniques have been developed, the ability to predict the dynamo capacity of a flow and the estimate of the corresponding critical value of the magnetic Reynolds number (the control parameter of the instability) has been elusive, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2015